[an error occurred while processing this directive]
От методов, повышающих криптостойкость системы в целом, перейдем к блоку хеширования паролей методу, позволяющему пользователям запоминать не 128 байт, то есть 256 шестнадцатиричных цифр ключа, а некоторое осмысленное выражение, слово или последовательность символов, называющуюся паролем. Действительно, при разработке любого криптоалгоритма следует учитывать, что в половине случаев конечным пользователем системы является человек, а не автоматическая система. Это ставит вопрос о том, удобно, и вообще реально ли человеку запомнить 128-битный ключ (32 шестнадцатиричные цифры). На самом деле предел запоминаемости лежит на границе 8-12 подобных символов, а, следовательно, если мы будем заставлять пользователя оперировать именно ключом, тем самым мы практически вынудим его к записи ключа на каком-либо листке бумаги или электронном носителе, например, в текстовом файле. Это, естественно, резко снижает защищенность системы.
Для решения этой проблемы были разработаны методы, преобразующие произносимую, осмысленную строку произвольной длины пароль, в указанный ключ заранее заданной длины. В подавляющем большинстве случаев для этой операции используются так называемые хеш-функции (от англ. hashing мелкая нарезка и перемешивание). Хеш-функцией называется такое математическое или алгоритмическое преобразование заданного блока данных, которое обладает следующими свойствами:
Эти свойства позволяют подавать на вход хеш-функции пароли, то есть текстовые строки произвольной длины на любом национальном языке и, ограничив область значений функции диапазоном 0..2N-1, где N длина ключа в битах, получать на выходе достаточно равномерно распределенные по области значения блоки информации ключи.
Нетрудно заметить, что требования, подобные 3 и 4 пунктам требований к хеш-функции, выполняют блочные шифры. Это указывает на один из возможных путей реализации стойких хеш-функций проведение блочных криптопреобразований над материалом строки-пароля. Этот метод и используется в различных вариациях практически во всех современных криптосистемах. Материал строки-пароля многократно последовательно используется в качестве ключа для шифрования некоторого заранее известного блока данных на выходе получается зашифрованный блок информации, однозначно зависящий только от пароля и при этом имеющий достаточно хорошие статистические характеристики. Такой блок или несколько таких блоков и используются в качестве ключа для дальнейших криптопреобразований.
Характер применения блочного шифра для хеширования определяется отношением размера блока используемого криптоалгоритма и разрядности требуемого хеш-результата.
Если указанные выше величины совпадают, то используется схема одноцепочечного
блочного шифрования. Первоначальное значение хеш-результата
H0 устанавливается
равным 0, вся строка-пароль разбивается на блоки байт, равные по длине
ключу используемого для хеширования блочного шифра, затем производятся
преобразования по реккурентной формуле:
Hj=Hj-1 XOR
EnCrypt(Hj-1,PSWj),
где EnCrypt(X,Key)
используемый блочный шифр (рис.1).
Последнее значение Hk используется
в качестве искомого результата.
Рис.1.
В том случае, когда длина ключа ровно в два раза превосходит длину блока, а подобная зависимость довольно часто встречается в блочных шифрах, используется схема, напоминающая сеть Фейштеля. Характерным недостатком и приведенной выше формулы, и хеш-функции, основанной на сети Фейштеля, является большая ресурсоемкость в отношении пароля. Для проведения только одного преобразования, например, блочным шифром с ключом длиной 128 бит используется 16 байт строки-пароля, а сама длина пароля редко превышает 32 символа. Следовательно, при вычислении хеш-функции над паролем будут произведено максимум 2 "полноценных" криптопреобразования.
Решение этой проблемы можно достичь двумя путями : 1) предварительно "размножить" строку-пароль, например, записав ее многократно последовательно до достижения длины, скажем, в 256 символов; 2) модифицировать схему использования криптоалгоритма так, чтобы материал строки-пароля "медленнее" тратился при вычислении ключа.
По второму пути пошли исследователи Девис и Майер, предложившие алгоритм также на основе блочного шифра, но использующий материал строки-пароля многократно и небольшими порциями. В нем просматриваются элементы обеих приведенных выше схем, но криптостойкость этого алгоритма подтверждена многочисленными реализациями в различных криптосистемах. Алгоритм получил название "Tandem DM" (рис.2):
G0=0; H0=0 ;
FOR J = 1 TO N DO
BEGIN
TMP=EnCrypt(H,[G,PSWj]); H'=H XOR TMP;
TMP=EnCrypt(G,[PSWj,TMP]); G'=G XOR TMP;
END;
Key=[Gk,Hk]
Квадратными скобками (X16=[A8,B8]
) здесь
обозначено простое объединение (склеивание) двух блоков информации равной
величины в один удвоенной
разрядности. А в качестве процедуры
EnCrypt(X,Key)
опять может
быть выбран любой стойкий блочный шифр. Как видно из формул, данный
алгоритм ориентирован на то, что длина ключа двукратно превышает размер
блока криптоалгоритма. А характерной особенностью схемы является тот
факт, что строка пароля считывается блоками по половине длины ключа, и
каждый блок используется в создании хеш-результата дважды. Таким образом,
при длине пароля в 20 символов и необходимости создания 128 битного
ключа внутренний цикл хеш-функции повторится 3 раза.
Рис.2.
Назад | Содержание | Вперед
[an error occurred while processing this directive]